Applications of Evolutionary Neural Networks for Sales Forecasting of Fashionable Products

نویسندگان

  • Yong Yu
  • Tsan-Ming Choi
  • Zhan-Li Sun
چکیده

The evolutionary neural network (ENN), which is the hybrid combination of evolutionary computation and neural network, is a suitable candidate for topology design, and is widely adopted. An ENN approach with a direct binary representation to every single neural network connection is proposed in this chapter for sales forecasting of fashionable products. In this chapter, the authors will first explore the details on how an evolutionary computation approach can be applied in searching for a desirable network structure for establishing the appropriate sales forecasting system. The optimized ENN structure for sales forecasting is then developed. With the use of real sales data, the authors compare the performances of the proposed ENN forecasting scheme with several traditional methods which include artificial neural network (ANN) and SARIMA. The authors obtain the conditions in which their proposed ENN outperforms other methods. Insights regarding the applications of ENN for forecasting sales of fashionable products are generated. Finally, future research directions are outlined. DOI: 10.4018/978-1-60566-766-9.ch018

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time series sales forecasting for short shelf-life food products based on artificial neural networks and evolutionary computing

Due to the strong competition that exists today, most manufacturing organizations are in a continuous effort for increasing their profits and reducing their costs. Accurate sales forecasting is certainly an inexpensive way to meet the aforementioned goals, since this leads to improved customer service, reduced lost sales and product returns and more efficient production planning. Especially for...

متن کامل

The Modeling and Comparison of GMDH and RBF Artificial Neural Networks in Forecasting Consumption of Petroleum Products in the Agricultural Sector

Energy plays a significant role in today's developing societies. The role of energy demands to make decisions and policy with regard to its production, distribution, and supply. The vital importance of energy, especially fossil fuels, is a factor affecting agricultural production. This factor has a great influence on the production of agricultural products in Iran. The forecast of the con...

متن کامل

Neural Networks in Electric Load Forecasting:A Comprehensive Survey

Review and classification of electric load forecasting (LF) techniques based on artificial neuralnetworks (ANN) is presented. A basic ANNs architectures used in LF reviewed. A wide range of ANNoriented applications for forecasting are given in the literature. These are classified into five groups:(1) ANNs in short-term LF, (2) ANNs in mid-term LF, (3) ANNs in long-term LF, (4) Hybrid ANNs inLF,...

متن کامل

Using the hybrid Taguchi experimental design method – TOPSIS to identify the most suitable artificial neural networks used in energy forecasting

The use of artificial neural networks (ANN) in forecasting has many applications. Appropriate design of ANN parameters enhances the performance and accuracy of neural network models.  Most studies use a trial and error approach in setting the value of ANN parameters. Other methods used to determine the best structure of a neural network only use a single evaluation criterion to determine the ap...

متن کامل

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016